

INDEPTH Guyed Tower Anchor Corrosion Control Flow Chart For EXISTING STRUCTURES

Add points from each category to determine range

See reverse side for additional information on this flow chart.

Reading the Flow Chart

This flow chart is designed to provide a simple and easy method to determine what course of action one must take to protect their towers. View ANSI/TIA 222-G for further information on approved methods of cathodic protection.

Note: For a complete method of procedure on assessing the condition of tower anchors and the various methods of corrosion protection, refer to the Anchor Inspection Standard 4/06. It is advisable to install cathodic protection on all guyed towers, especially new structures.

Corrosion Severity Factor (CSF)

(from the Anchor Inspection Standard)

Anchor shafts shall be given a rating at time of inspection relative to the severity of the corrosion found. The rating is based on a scale referred to hereafter as the *corrosion severity factor* or CSF. Corrosion Severity Factor shall be measured at the most corroded area of the shaft.

- 1. **Corrosion Severity Factor 1** (CSF 1) includes the following: Galvanizing in tact, no signs of rust, no cross sectional material loss. Anchors rated CSF 1 should be monitored in the future during regular tower inspections.
- 2. **Corrosion Severity Factor 2** (CSF 2) includes any of the following: Galvanizing slightly to mostly gone, rust spots prevalent, minor pitting or flaking, no cross sectional material loss. Additional corrosion control is highly recommended.
- 3. Corrosion Severity Factor 3 (CSF 3) includes ANY of the following: Galvanizing mostly to completely gone, heavily corroded, deep pitting, large areas of flaking, measurable cross sectional material loss. Anchors rated CSF 3 require additional corrosion control methods and may require repair or replacement.

Soil Analysis

Collect a forty-eight ounce sample or six cups of soil from the bottom of the excavation and store in a water tight container. Soil from one anchor is adequate to perform necessary tests.

2.3.1 Laboratory test the sample in both as-found and saturated state to determine resistivity in ohm-centimeters.

Table 4.1.1: Soil Resistivity Classification A.W.Peabody

Resistivity in ohm/cm 0 – 5,000 5,000 – 10,000 10,000 – 25,000 Category
Very Corrosive
Moderately Corrosive
Progressively Less Corrosive

Importance of Tower

(from ANSI/TIA-222-G Table 2-1

Description of the Structure	Class
Structures that due to height, use or location represent a low hazard to human life and damage to property in the event of failure and/or used for services that are optional and/or where a delay in returning the services would be acceptable.	I
Structures that due to height, use or location represent a substantial hazard to human life and/or damage to property in the event of failure and/or used for services that may be provided by other means.	II
Structures that due to height, use or location represent a high hazard to human life and/or damage to property in the event of failure and/or used primarily for essential communications.	III

